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AMG /| AMGe Framework

e AMGe heuristic is based on multigrid theory:
Interpolation must reproduce a mode up to the same
accuracy as the size of the associated eigenvalue

e Bound a measure (weak approximation property):

{(1-Q)e (I-Qe)

| Al T . Q=P[O I]

Localize the measure to build AMGe components
Several variants developed: E-Free, Spectral
Based on pointwise relaxation

Assumes coarse grid is a subset of fine grid
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We are generalizing our AMG framework
to address new problem classes

e Maxwell and Helmholtz problems have huge near
null spaces and require more than pointwise
smoothing to achieve optimality in multigrid

s (& |

Model of a section of the Next
Linear Collider structure

Resonant frequencies in
a Helmholtz Application

e Our new theory allows for any type of smoother, and
also works for a variety of coarsening approaches
(e.g., vertex-based, cell-based, agglomeration)

e Paper submitted
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Preliminaries...

e Consider solving the linear system
Au =1
e Consider smoothers of the form
U1 = U+ M

where we assume that (M+M'-A) is SPD (necessary
& sufficient condition for convergence)

e Note: M may be symmetric or nonsymmetric

e Smoother error propagation

&+1=(1-M71A) g

CASC

RDF 5



Preliminaries continued...

e Let P:0O"% - O" beinterpolation (prolongation)

e Let R:0O" - O" be some “restriction” operator
— Note that Ris not the MG restriction operator
— The form of Rwill be important later

e Define Q:0" - O" to be a projection onto range(P);
hence Q=PRsuch that RP=I
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Two new measures

e First measure:
<|v|(|v| +MT-A"MT(1-0Q¢ (1 —Q)e>

H(Q.e) = CAe e)

e Second measure: Define o(M) =%(M+M') , then

Co(M) (1-Q)e (I -Q)e,

Hol Q) = <Ae,e>

e Measure |, Is the analogue to the AMGe measure
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First measure and MG convergence

e Theorem: Assume that the following holds for some
constant K:

H(Q,e) <K Oeld™\ {0}

Then, 2-level MG converges uniformly:
-1 1 vz
[(1=-M TA) (1-Qa) eAs[1—Kj lel

Here, Q, = P(P'AP)'P'A is the A-orthogonal projector
onto range(P)

e As in AMGe, we could try to directly localize this
new measure to help us build AMG algorithms

e But, we will take a different approach
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Second measure and MG convergence

e Bounding y, also implies uniform convergence...

e Lemma: Assume that (M+M'-A) is SPD. Then,
2

Q.8 <5 Ho(Q.)

where A = 1 measures the deviation of M from o(M)
{Mv,wy <A <a(M)v,v D e a(M)yw,w ) 2
and where 0<w=A,(0(M)1A)<2.

e Must insure “good” constants
— In particular, W« 2
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General notions of C-pts & F-pts

e Recall the projection Q=PR, with RP=I

e We now fix Rso that it does not depend on P
— Defines the coarse-grid variables, u.= Ru
— Recall that R=[0,1] (P'=[ W', I ]") for AMGe; i.e., the coarse-
grid variables were a subset of the fine grid
— C-pt analogue
e Define S:0% - 0" s.t. n=n-n. and RS=0
— Think of range(S) as the “smoother space”, i.e., the space on
which the smoother must be effective
— Note that Sis not unigue
— F-pt analogue

e Sand R' define an orthogonal decomposition of O";
any vector ecan be written as e= Se+ R'e,
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The Min-max Problem

e Consider the following base measure, where Xis any
SPD matrix:

{(X(1-Q)e (I-Q)e)
<Ae,e>

U (Q, €) =

e Theorem: Define

L = min max PR, €
Hx P ez0 Ux( )

The arg min satisfies STAP. = 0 and the minimum is

= Agin ((STX9)7Y(S'A9))

min

e We will call P. the optimal interpolation operator
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The Min-max Problem... and AMGe

e The optimal interpolation has the general form:

-(s'as) " {s"ar")

Ph=[SR'] |

e For AMGe, the coarse-grid variables are a subset of
the fine grid:

R=[01]; P= |

0

Hence,

| Al
Amin(Ast)
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The Min-max Problem... Spectral AMGe
and Smoothed Aggregation (SA)

e For Spectral AMGe and SA, the coarse-grid variables
are coefficients of basis functions:

R"=[py....pc], RP=I, S=[pgyq....Pn]

where the p, are orthonormal eigenvectors of Awith
eigenvalues A\;< ... <A,. Hence,

A
T n
PD:R’ ME:)\
c+1

e The optimal interpolation can also be viewed as a
“smoothed” tentative prolongator

Py =(1-S'A9) 1s™a) RT
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The new theory separates construction of
coarse-grid correction into two parts

e The following measures the ability of a given coarse

grid Q. to represent algebraically smooth error:

L = min max U(PR, e
M In max ( )

e Theorem: (1) Assume that u* < K for some constant K.
(2) Assume that any one of the following holds for n > 1.

(AQe, Qe) <nfAee), e
(A(1-Q)e, (1-Q)e) <nfAee), Oe
(APec, Ses)“ < (1-171) (APes, Pec) (ASes, Ses), Deg, es
Then, W(PR, e) < nkK, Le.
e (1)insures coarse grid quality —use CR

e (2)Iinsures interpolation quality — necessary condition
that does not depend on relaxation!
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CR is an efficient method for measuring
the quality of the set of coarse variables

e CR (Brandt, 2000) is a modified relaxation scheme
that keeps the coarse-level variables, RU, invariant

e We have defined several variants of CR, and shown
that fast converging CR implies a good coarse grid:

- (At 1
nt<
2—W 1—pcr

e Hence, CR can be used as atool to efficiently
measure the quality of a coarse grid!

e General idea: If CR is slow to converge, either increase
the size of the coarse grid or modify relaxation

e F-relaxation is a specific instance of CR
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We can use CR to choose the coarse grid

e To check convergence of CR, relax on the equation
Aff X =0
and monitor pointwise convergence to O
e CR coarsening algorithm:
Initialize U=Q; C=; F=Q-C

While U# [
Do v compatible relaxation sweeps

U= {i:|xV/x¥~1>6}
C=C0{independent set of U} ; F=Q -C
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Using CR to choose the coarse grid

2> Initialize U-pts

‘
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K
K
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Using CR to choose the coarse grid

2 Do CR and redefine
U-pts as points
slow to converge
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Using CR to choose the coarse grid

> Select new C-pts as
Indep. set over U
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Using CR to choose the coarse grid
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Using CR to choose the coarse grid
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> Select new C-pts as

Indep. set over U

RDF 21



CR based on matrix splittings
& +1= (1-Ms A9 e; Ms = S'MS, As = S'AS

e Theorem: Assume that (M+M'-A) is SPD. Then,

2
s )
2-wW ) 1-ps

where A and w are as before, and p,= || (I = Mg*AY || o,
Fast converging CR implies good coarse grid

If relaxation is based on a splitting A= M —-N, then M
Is explicitly available, and CR is probably feasible
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CR based on additive subspace methods

Consider the following additive method.:
=M M= S alta AT
where |, : 0% - 0"and O"= [J, range(l)).
Define full rank normalized operators S and R' s.t.
range(S) = range(l;'S) and range(R ") = range(l;'R’)
The |, must be chosen so that R S=0
Then an additive CR is given by

|—|\/|c_r1As; Mc_rlzzi STIs,i(lg:iAls,i)_llgi; lsi = 1iS

Same theoretical result as before, but with A=1
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Compatible Additive Schwarz is natural
when R=[ 0, | |

e Justremove coarse-grid points from subdomains
e Itis clear that R S=0for any choice of |,

Additive Schwarz CR Additive Schwarz
L L L L L
L L L L L
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More general form of CR

e+1=(1-(S'"M719 Ag e, As = S'AS

e Here, Smust be normalized so that S'S= |
e This variant of CR is always computable

e Theoretical result currently requires SPD smoother,
M, and involves an additional constant:

1 1 1
(25 Fe )

where yL][0,1) satisfies
< MSVs, RTVc> < y< MSVs, S\/s>]j2 < MRTVC, RTVC>1/2; DVs, Ve
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Another general form of CR (due to
Brandt and Livne)

e.+1=(1-S'"M A9 e =S'(1-M "1A) S,

e As before, Smust be normalized so that S'S= 1
e This variant of CR is also always computable

e Theoretical result is similar, but weaker:

s () e
(279)( 1=V ) (1-pg)°
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Anisotropic Diffusion Example

—SUmK—LWyzﬁ

e Dirichlet BC’s and €[1(0,1]
e Piecewise linear elts on triangles

e Standard coarsening,i.e., S=[1,0]"

e The spectrum of the CR iteration matrix satisfies

}\( | _MS_lAS) D{ _JZ-SFS’ JZie
e Linear interpolation satisfies, with n =2,
(AQe, Qe) <n(Aee), Le
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Anisotropic Diffusion Example —
leveraging previous work

e Consider the AMGe measure

Al (1 -Q)el®<n{Ae e

e ltis easyto showthat n=||Al /¢
e As mentioned earlier, this implies

(A(1-Q)e, (1-Q)e) <nfAee), De

e Butthe AMGe method produces linear interpolation;
It is just unable to judge its quality in this setting
(i.e., when using line relaxation)
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Conclusions and Future Directions

We have developed a more general theoretical
framework for AMG methods
— Allows for any type of smoother
— Allows for a variety of coarsening approaches (e.g., vertex-
based, cell-based, agglomeration)

The theory separates construction of coarse-grid
correction into two parts:
— Insuring the quality of the coarse grid via CR
— Insuring the quality of interpolation for the given coarse grid
(leverages earlier work)

We have defined several variants of CR
Will explore further the use of CR in practice
Choosing / modifying smoothers automatically?
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